June 21, 2017

FAQ: SLDP tips and troubleshooting

Our new real-time low latency SLDP protocol is expanding among our customers so we get more questions regarding its usage.

Some basic usage of SLDP protocol is described in this article. It describes typical usage scenarios, however there are always some things to improve your use cases and give better user experience. The following frequently asked questions help improving that.

June 15, 2017

SLDP Player: iOS SDK for RTMP and SLDP playback

Our company is continuously improving its mobile solutions. They already include SDKs for streaming from mobile devices via RTMP and RTSP along with corresponding Larix Broadcaster and Larix Screencaster free apps.

Our customers are also interested in adding playback capabilities into heir applications. So today we introduce SLDP Player SDK for iOS.

It allows playing streams as follows:

  • RTMP is a commonly used protocol for live streaming to end-users devices so now you can use it in your apps.
  • SLDP is the low latency real-time streaming protocol. This protocol allows delivery of media with sub-second latency at the end-users' devices. Now you can add playback capabilities for having low delay streaming to your users' iOS devices.
  • H.264 video and AAC audio media types are supported as in iOS platform itself.
You can try it in action using SLDP Player free application.



Visit our website to subscribe to our mobile SDKs.


We'll soon release Android version SLDP Player, so stay tuned for updates.

Related documentation


June 12, 2017

SLDP proprietary streaming protection

Our company has released SLDP - the low latency real-time streaming protocol. It allows delivery of media with sub-second latency at the end-users' devices.

SLDP is a proprietary solution created with security in mind to make sure your content is delivered efficiently and safe.

SLDP has its own data transfer algorithm so media server and a player both control data transmission and their algorithms are not visible to the outside observer. This is why it's not covered by any modern stream grabbers. So your stream is not intercepted by anyone but played well in the player.
If it's grabbed by any software, our team will modify both parts of delivery mechanism - server and player - to cover these new circumstances.

Learn more about SLDP


One more option on top of that is to use SSL connection for transfer. This will prevent your stream's data from sniffing. Nimble Streamer allows enabling SSL for outgoing connections, this will cover SLDP as well. Your URL for our players will have wss:// prefix instead of ws:// in this case.

And of course, you may apply any feature from our paywall feature set which includes hotlink protection, geo-location and IP range block, pay-per-view framework and some other capabilities. Visit our paywall page to see all capabilities.
Bottom line: use SLDP to securely transfer your live streams.
Your media will be delivered with high security and low latency.


You can try SLDP in action any time by installing Nimble Steamer. Feel free to contact us for any questions.


Take a look at the answers for frequent questions to improve your SLDP usage.


Related documentation


SLDP low latency streamingPaywall feature set, Live Streaming via Nimble Streamer,

June 10, 2017

FAQ: Larix mobile broadcasting SDK

As long as we provide mobile broadcasting SDK, we get a number of typical questions regarding its capabilities and use cases. Let's take a look at most frequent ones and have them answered.

June 7, 2017

HEVC support in Nimble Streamer Transcoder

HEVC (H.265) is a high-efficiency codec, best fit for high resolution video like HD, 4K and 8K streaming. Nimble Streamer Live Transcoder now supports HEVC transcoding in addition to already supported transmuxing feature set.

Live Transcoder allows performing both decoding and encoding of HEVC.

To receive HEVC for transcoding, Nimble Streamer allows processing 
  • RTSP from published and pulled sources;
  • MPEG-TS via both UDP and HTTP. 
The result stream can be delivered using


Decoding


The following methods are currently supported for decoding HEVC content for further transformation:

Encoding


Currently the encoding is performed only via hardware acceleration by Quick Sync and NVENC.

Easy control


Live Transcoder has easy to use Web UI which provides drag-n-drop workflow editor to apply transcoding scenarios across various servers in a few clicks.
With FFmpeg filters you can transform content in various ways, e.g. change the video resize, make graphic overlays, picture-in-picture, key frames alignments, audio re-sampling etc.



Feel free to visit Live Transcoder webpage for other transcoding features description and contact us if you have any question.

Related documentation


Live Transcoder for Nimble Streamer, Audio streaming features, Build streaming infrastructure, Transcoder web UI preview, Live Streaming features, Build streaming infrastructure,


Intel Quick Sync H.265 encoder parameters in Live Transcoder

Intel® Quick Sync technology provides efficient encoding capabilities. It allows using hardware acceleration for video decoding and encoding using Intel® processors feature set and software encoding in all other cases.

Nimble Streamer Transcoder allows using Intel® Quick Sync as an HEVC video decoder and encoder in transcoding scenarios.

Let's take a look at encoder settings available at the moment. They are very similar to those described in this article.

NVidia NVENC settings for H.265 in Live Transcoder

NVidia® Products with the Kepler, Maxwell and Pascal generation GPUs contain a dedicated accelerator for video encoding, called NVENC, on the GPU die.

Nimble Streamer Live Transcoder has full support for NVidia video encoding and decoding hardware acceleration. Having the hardware capable of the processing and drivers properly installed, our customer can choose NVENC to handle streams' encoding.

HEVC (H.265) codec is supported by multiple NVidia GPUs so now it's also supported in our Live Transcoder. You can use Transcoder to decode and encode H.265 on your hardware under both Linux and Windows.

You can take a look at the list of NVidia GPUs capable of hardware encoding acceleration. To make HW acceleration work, you need to install the graphic card drivers into the system. Use this link to download and install them. If you haven't yet installed Nimble Streamer transcoder, use this page to find proper setup instruction.

Notice that NVENC has a couple of known issues, please check Troubleshooting section below in this article.

Setting encoder


The transcoding scenarios are created using our web UI. You can check this YouTube playlist to see how various use cases are defined. Takes just a couple of minutes to complete.